Hochschule für Technik, Wirtschaft und Kultur Leipzig Leipzig University of Applied Sciences

Simulation of Printing Processes in Education using Open-Source FEM Software

Holger Zellmer

HTWK Leipzig University of Applied Sciences | Fakultät Medien | www. htwk-leipzig.de

www.ip3.htwk-leipzig.de

Introduction

Why should students learn numerical simulation methods?

- \rightarrow helps to think like an engineer
- \rightarrow helps understanding basic effects by easily changing physical parameters or properties in a system
- → learn new methods

 \rightarrow get information on physical properties or values where in situ measurement is not possible

Some print-related Projects in Student Education

The Software

Preprocessor

Create a CAD Model

Create and define Bodies and Boundaries

Create a mesh of finite elements

Processor

Assign physical properties to bodies e.g. density, viscosity

Assign boundaryconditions e.g. force, velocity, temperature

Assign physical model e.g. Navier-Stokes flow solution, heat equation

Solve the equations

Postprocessor

View the results

Extract data

The Software

Commercial Solutions

Many good commercial software solutions are on the marked, mainly for windows based systems.

Although some distributors offer university discounts, the software ist still very expensive.

Preprocessor

Processor Postprocessor **NNSYS**

Processor Postcrozessor

The Software

Open Source Solutions

For numerical simulation there is a variety of free software available.

Development in user community or European research projects

+ High performance- Little less convenience+ Students can use the software at home

Linux based (can be easily installed with bootmanager parallel to win)

Preprocessors

Processors

The Training: Building a Model

Create a model step by step

Points \rightarrow lines \rightarrow surfaces \rightarrow volumes

Learn to think in 3D

Use symmetries to make it simple

First example: create a cube of rubber and apply a force to it

Applying the Physics

	📔 🕗 🖉 🎑 🔶 🗰 😽) »	inear el	asticity Navier-Sto	okes Linear elasticity
O Elmer	Boundary condition to	c	Prope Young Poisso Dampi Rayleig Rayleig	r ties s modulus n ratio ng coefficient gh Damping gh alpha	(1.5e6 (0.1
	This example model "linear for cube of rul Assign materi properties "Yo modulus" and ratio"	use elasti ober al ungs "Pois	Ravleid City" SON	Th beta 5-vector 5-vector elasticity Tensor ctor 1 ctor 2 ctor 3	DINS
Material Properties	Assign force t Fix bottom	Assign force to top Fix bottom		to bodies: ody 1 Material library	
Boundary condition bottom			itickyback		

HTWK Leipzig

Viewing the Results

The Project

Based on the training and test cases a real world application is simulated:

Flexography:

- Compare digital dots to flat top dots
- Compare a compressible submount (plate mounting foam tape) to incompressible rigid submount (plate mounting tape)
- calculate the dot size for 5% an 10% dot coverage

The Project: CAD Model

The Project: Material parameters

Material parameters are obtained in the materials lab

Zwick Universalprüfmaschine

Youngs modulusPoisson ratio

```
Material 1
Name = "Fotopolymer"
Poisson ratio = 0.45
Youngs modulus = 4.68E6
End
```

```
Material 2
Name = "PET"
Poisson ratio = 0.35
Youngs modulus = 2800E6
End
```

```
Material 3
  Name = "Foam Tape"
  Poisson ratio = 0.1
  Youngs modulus = 1.65E6
End
```


The Project: Simulation

Use four possible combinations:

digital dot \leftrightarrow flat top dot

compressible ↔ incompressible submount

Change the infeed from 0 to 100 μm

Calculate contact forces

Calcutale strain and stress in the fotopolymer

Calculate contact area

 \rightarrow calculate dot gain

Note: all calculations are in SI units (m kg s)

Open Source FEM Simulation in Education | 4 The Project

Stress Analysis Digital Dot Compressible Submount

Flat Top Dot Compressible Submount

Digital Dot Incompressible Submount Leipzig

Flat Top Dot Incompressible Submount

HTWK Leipzig

Stress Analysis: Maximum Stress

Infeed in μm

Contact Analysis

Digital Dot Compressible Submount

Contact Analysis: Dot Gain

HTWK Leipzig University of Applied Sciences | Faculty of Media | Prof. Dr. Holger Zellmer | Prepress Systems and Technology

Summary

Open source software works

Open source software can be used in predicting effects in printing

Students can use the software

Further effects and more physics can be added

- \rightarrow ink behaviour
- \rightarrow compression of the substrate (e.g. corrugated board)

For further Questions:

holger.zellmer@htwk-leipzig.de